A Study on 3-Body Abrasive Wear Behaviour of Aluminium

Rahul Singh
NHCE, Bangalore
Corresponding Author: Rahul Singh
rhlsingh823@gmail.com

ABSTRACT

Metals and alloys have found their many roles in many applications like structural and corrosive, environment. The alloys/composites having a high strength to low weight ratio have gained the attention of many researchers. In the above work, Aluminium metal matrix composite was prepared by die casting route, by varying the weight % of reinforcement. Made composite specimens are subjected to 3-body abrasive testing by varying applied load and time, the epoxy particles of 900 grit size were used as abrasive particles. It was observed that with an increase of weight of wear resistance of composite was also increasing and on the comparison, it was found reinforced composite gives good wear resistance to the base alloy.

Keywords: Aluminium, Abrasive, wear

1. INTRODUCTION

Since last two decades, composite materials have attracted researchers than their counterpart Monolithic materials due to the ability to alter their physical properties and mechanical properties by varying filler phase. Based on the type of matrix phase, composite are divided into the metal matrix (MMC), polymer matrix (PMC), ceramic matrix composites (CMC). MMCs have good strength, thermal conductivity, damping properties, low coefficient of thermal expansion and lower density. For these reasons, it is preferred in tribological applications.

2. METHODS

Material

In this work, as already mentioned, the Aluminium alloy was used as metal matrix composite. In this alloy, magnesium has a poor alloying element. Hence magnesium was used as a wetting agent for proper mixing. The chemical composition and mechanical properties are given in Table 1 and 2.

Table 1. Chemical Composition of Al 8011

<table>
<thead>
<tr>
<th>Material</th>
<th>Fe</th>
<th>Si</th>
<th>Mn</th>
<th>Z</th>
<th>Cu</th>
<th>Ti</th>
<th>Cr</th>
<th>Mg</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight %</td>
<td>1</td>
<td>0.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>97.5</td>
</tr>
</tbody>
</table>

To Cite This Article: Rahul Singh. A Study on 3-Body Abrasive Wear Behaviour of Aluminium. International Annals of Medicine. 2017;1(2)
Table 2. Mechanical Properties of Al 8011

<table>
<thead>
<tr>
<th>Density</th>
<th>Elastic Modulus</th>
<th>Strength to Weight Ratio</th>
<th>Ultimate Tensile Strength</th>
<th>Thermal Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.72 g/cm³</td>
<td>91 GPa</td>
<td>50 kN-m/kg</td>
<td>110 Mpa</td>
<td>31.8 μm/m-k</td>
</tr>
</tbody>
</table>

Reinforcement

Graphite powder of an average size of 50 microns was used as reinforcement; Graphite powder has physical properties like good electrical and thermal conductivity, high purity, and temperature stability. Graphite is a well-recognized solid lubricant which also has the advantage of low density. In graphite reinforced Aluminium Matrix Composites (AMCs), Graphite serves as a solid lubricating layer between the composite and rubbing surface helping in reduction of composite e-wear and does not need any additional solid and liquid lubrication.

Composite preparation

The Al-or composite was fabricated by a two-step mixing stir casting method, stirring speed was gradually increased up to 600 rpm, and it was done for about 500 sec. When compared to conventional stirring, double stir casting results in the more uniform microstructure. The Al 8011 alloy ingots, were cut into small pieces using a hand press, placed in a graphite crucible and heated in a resistance furnace up to 750°C above its melting point (8600°C), the maximum temperature level of the furnace being 1200°C.

3. RESULTS & DISCUSSION

In 2-body abrasion process, particles are rigidly attached to the second body, where as in 3-body abrasion process, wear is caused by loose abrasive particles which can freely move between contact surfaces. The wear rate in the three-body abrasion is lower when compared to two-body abrasion. The results of 3-body abrasive wear test for various combinations of applied load and time were tabulated.

4. CONCLUSION

3-Body Abrasive wear behavior of Al was studied in this work. The samples were subjected to wear test by varying the load in the range of 10-40 kgs for various durations of time at the constant speed of 600 rpm. From the experimental investigation following main conclusions are drawn:

- Successful fabrication of 8011 Aluminum composite reinforced with Cu is possible by simple two-step stir casting process.
- On comparison, it is found that reinforced composite gives good 3-D wear resistance than base Al alloy.
REFERENCES